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Motivation

• Household income in developing countries varies but 
consumption is smooth

• Such economies usually lack formal insurance 
markets

• Informal arrangements enable communities in these 
countries to counter the effects of income variation

• We use a network to model these bilateral mutual 
insurance agreement



Some stylized facts

• Numerous studies (Townsend , 1994) have shown 
that informal insurance is not a community level 
phenomenon.

• In times of need individuals seek help not from the 
entire village but only from friends and family 
(Fafchamps and Lund, 2003)

• Townsend (1994) also shows that the sharing of 
resources is not equal



Objective

• Use these stylized facts to build a networks model

• Identify the structure of stable and efficient networks

• Examine when asymmetric /symmetric architectures 
can be stable among ex ante symmetric agents

• Examine the impact of agent heterogeneity



Model features

• Agents randomly obtain resources of two values: 
high or low (static setting)

• Pairs of agents insure each other by “sharing” 
resources (hence risk) to deal with these fluctuations 

• Agents only insure those with whom they have a 
direct connection (immediate neighborhood)

• High endowment agents give low endowment agents 
in their immediate neighborhood a fixed amount



Model features

• Low endowment agents receive a fixed amount from 
each high endowment agent in their neighborhood

• When two agents insure each other, each of them 
increases her chance of obtaining a better payoff 
when she receives low resources and vice versa.

• High endowment agents always obtain higher 
benefits than those with low endowments (no equal 
sharing norm)



Model features

• Links are costly and costs depend on the number of 
links established by the agents:

– For a link between agent i and j, the cost of a link increases 
the more links i has (Benchmark Model)

– For a link between agent i and j, the cost of a link increases 
the more links j has (Model with Heterogeneity)

• Benefits: Each additional link is less valuable than the 
previous one (strictly concave)



Literature

• Townsend (1994)

• Bloch, Genicot and Ray (2008)

• Bramoulle and Kranton (2006, 2007)



Literature

• There exist pairwise stable networks in which 
individuals are in asymmetric positions relative to the 
risk they support. 
– In such networks agents who obtain the smallest amount 

of insurance are always linked together. 
– Those who obtain the highest/optimal  amount of 

insurance: Depends. 

• In efficient networks agents always obtain similar 
amounts of insurance

• Conflict between efficiency and stability



Model setup

• Players: N = {1,2, …, n}, n ≥ 3, community of ex ante
identical agents.

• Endowments: realizations are independent and 
identical across agents.

State 1:  > 0 with probability p

State 0: 0 with probability 1-p

• Links of player i: (gi,1, …, gi,i-1, gi,i+1, …, gi,n)

– gi,j = 1   there exists a link between players i and j

– gi,j = 0   there does not exist a link between i and j



Model setup

• g + gi,j : Adding a link

• g - gi,j : Deleting a link

• A network g is a n  n matrix where

– gij = 1 implies i and j have a risk sharing agreement

– gij = 0 implies lack of such an agreement

– by convention gii = 0

– Risk sharing links are mutual: gij = gji



Network definitions
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Network definitions

• Chain

4 1  3

• Connected

• Component

• Empty and Complete

• Star



Network definitions

• k-regular

• 𝑘+-regular

• 𝑘−-regular

• Almost k regular



Network definitions

• 𝑔|𝑁′: subnetwork of g where 𝑖 ∈ 𝑁′ and j ∈ 𝑁′ are 

linked iff they are linked in g.

• Neighbors: those directly linked to one another

– Agent i’s neighbors: 𝑁𝑖 𝑔 = {j ∈ N: 𝑔𝑖𝑗 = 1}.

– Agent i’s degree: 𝑛𝑖 𝑔 = 𝑁𝑖 𝑔 .



Concavity and Convexity

• For each function f  let f(x) = f(x) – f(x-1).

• For all x, f is

– Concave: f(x+1) – f(x)   0

– Convex:  f(x+1) – f(x)   0



Transfers

• When agent i draws State 1 she gives (0,1) 
to each of her neighbors who draws State 0.

• When i draws State 0 she receives (0,1) 
from each of her neighbors who draw State 1.



Transfers

• When agent i draws State 1 she gives (0,1) 
to each of her neighbors who draws State 0.

• When i draws State 0 she receives (0,1) 
from each of her neighbors who draw State 1.

 Agents are ex ante identical but benefits 
depend on the network architecture



Expected payoffs

• The expected payoff function of each agent 
has two parts:

– A benefits part involving uncertainty depending 
on the endowment realization



Expected payoffs

• The expected payoff function of each agent 
has two parts:

– A benefits part involving uncertainty depending 
on the endowment realization

– A cost part which involves no uncertainty where 
costs depend on the number of links formed



Expected benefits

• CARA utility: 𝑢𝑖 𝑥 = 1 − 𝑒
−𝜌𝑥 where x is income 

and  > 0.

• Suppose agent i draws 0 and k of her neighbors draw 
state 1, then her benefits are:

𝑏𝑔 0, 𝑘 = 𝑢𝑖 𝑘 = 1 − 𝑒
−𝜌𝑘𝛿



Expected benefits

• CARA utility: 𝑢𝑖 𝑥 = 1 − 𝑒
−𝜌𝑥 where x is 

income and  > 0.

• Suppose agent i draws 0 and k of her neighbors 
draw state 1, then her benefits are:

𝑏𝑔 0, 𝑘 = 𝑢𝑖 𝑘 = 1 − 𝑒
−𝜌𝑘𝛿

• Suppose agent i draws 1 and k of her neighbors 
draw state 1, then her benefits are:
𝑏𝑔 1, 𝑘 = 𝑢𝑖 Θ − (𝑛𝑖 𝑔 − 𝑘)𝛿

= 1 − 𝑒−𝜌(Θ−(𝑛𝑖 𝑔 −𝑘)𝛿)



Expected benefits



Costs & Payoffs

• Player i’s links costs depend only on the number of 
links formed by her:   𝐶𝑖 𝑔 = 𝑓1(𝑛𝑖 𝑔)

where f1() is strictly increasing and convex.



Costs & Payoffs

• Player i’s links costs depend only on the number of 
links formed by her:   𝐶𝑖 𝑔 = 𝑓1(𝑛𝑖 𝑔)

where f1() is strictly increasing and convex.

• Expected payoffs:

𝑈𝑖 𝑔 = 𝐵𝑖 𝑔 − 𝐶𝑖 𝑔

= 𝚽 𝑛𝑖 𝑔 = 𝜙 𝑛𝑖 𝑔 − 𝑓1(𝑛𝑖 𝑔)



Definitions: Stability and efficiency

• A network is said to be pairwise stable if

– for all gij = 1, Ui(g)  Ui(g  gij) and Uj(g)  Uj(g  gij)

and

– for all gij = 0, if Ui(g) > Ui(g + gij) then Uj(g) < Uj(g + gij)



Definitions: Stability and efficiency

• A network is said to be pairwise stable if

– for all gij = 1, Ui(g)  Ui(g  gij) and Uj(g)  Uj(g  gij)

and

– for all gij = 0, if Ui(g) > Ui(g + gij) and Uj(g) < Uj(g + gij)

• An efficient network (W(𝒈𝒆)) is one that maximizes 
the sum of the expected payoffs of all the agents.



Properties of the Expected 
Neighborhood (ENB) Function

• Proposition 1: The ENB function of agent i is strictly 
increasing and strictly concave in the number of links 
she has formed.

– Each agent prefers more insurance to less when costs of 
links are sufficiently low.

– The marginal ENB of an i agent decreases with each 
additional link.



Properties of the Expected 
Neighborhood (ENB) Function

• Proposition 2: The marginal ENB function of agent i
increases with .

– If the agent draws the State 0, then her ENB is not affected 
by her income.

– Suppose the agent draws State 1. Then due to the 
concavity of the utility function, when her income 
increases, her marginal utility is affected less by the fact 
that she has to help one of her neighbors.



Existence

• Follows from a theorem of Erdös and Gallai (1960)

• A finite sequence 𝑠 = (𝑑1, 𝑑2, … , 𝑑𝑛) of nonnegative 
integers is graphical

if there exists a network g whose nodes have 
degrees 𝑑1, 𝑑2, … , 𝑑𝑛. 



Existence

• A sequence 𝑠 = (𝑑1, 𝑑2, … , 𝑑𝑛) of nonnegative 
integers such that 

𝑑1 ≥ 𝑑2 ≥ ⋯ ≥ 𝑑𝑛
and whose sum is even  

is graphical  if and only if

 𝑖=1
𝑟 𝑑𝑖 ≤ 𝑟 𝑟 − 1 +  𝑖=𝑟+1

𝑛 min 𝑑𝑖 , 𝑟

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟, 1 ≤ 𝑟 < 𝑛

-Erdös and Gallai (1960)



Existence

Lemma 1: Let n and k be non-negative integers with n > 
k. 

1. Let n or k be even. Then the sequence s = (k, …, k)
is graphical.

2. Let n and k be odd. Then the sequences s = (k+1, 
…, k), s’ = (k-1, …, k) are graphical.



Lemma 1: Proof Sketch

1. Let n or k be even. Then the sequence s = (k, …, k)
is graphical.

Sketch: Let n > k > 0. Since n or k is even, the sum of s is 
even. So we have,

𝑟𝑘 ≤ 𝑟 𝑟 − 1 +  𝑖=𝑟+1
𝑛 min 𝑘, 𝑟

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟, 1 ≤ 𝑟 < 𝑛

Case 1. 𝑟 ≤ 𝑘𝑘 ≤ 𝑛 − 1. Always true.



Lemma 1: Proof Sketch

Let n or k be even. Then the sequence s = (k, …, k) is 
graphical.

Case 2. 𝑟 > 𝑘. Note that since 𝑟 < 𝑛 and 𝑟 > 𝑘. What 
happens when k = n-1? Complete network. When k= 0, 
empty network. In these two polar cases, the s is 
graphical. 

So we have to consider 0 < k < n-1. Simple manipulation 
shows that this holds and Case 2 is satisfied. 



Pairwise Stable Networks

•  is strictly concave  there exists  𝑘 such that 
Φ  𝑘 > Φ(𝑘) for all 𝑘 ≠  𝑘.

• Let ℳ 𝑔 = {𝑖 𝜖 𝑁: 𝑛𝑖(𝑔) ≠  𝑘}.

• Proposition 3: Network g is pairwise stable iff for 
every agent 𝑖 𝜖 ℳ 𝑔 , 𝑛𝑖 𝑔 <  𝑘 and 𝑔|ℳ 𝑔 is 
complete. Moreover, (a) if n or  𝑘 are even, then k-
regular networks are always pairwise stable, and (b) 
if n or  𝑘 are odd the,  𝑘−-regular networks are always 
pairwise stable.



Pairwise Stable Networks: Intuition

• Suppose g is pairwise stable. 

– No agent will for more than  𝑘 links since it is the optimal.

– If i and j are not linked and have less than  𝑘 links, they will 
form the link. Hence for 𝑖 𝜖 ℳ 𝑔 , 𝑛𝑖 𝑔 <  𝑘 and 𝑔|ℳ 𝑔

is complete.

• Suppose 𝑖 𝜖 ℳ 𝑔 , 𝑛𝑖 𝑔 <  𝑘 and 𝑔|ℳ 𝑔 is 

complete.

- Since 𝑔|ℳ 𝑔 is complete, no more links can be formed.

- Since 𝑛𝑖 𝑔 <  𝑘, no agent will delete a link.



Pairwise Stable Networks: Intuition

• Suppose n or  𝑘 is even. 

– By Lemma 1 the sequence s = ( 𝑘,  𝑘, …,  𝑘) is graphical.

– So there exists a  𝑘-regular network that is pairwise stable.

• Suppose n and  𝑘 are odd. 

- Again by Lemma 1, we can show that there exists a  𝑘−-
regular networks that is pairwise stable.

Pairwise stable networks in pure strategies always exist for 
our payoff function. (Lemma 1 + Proposition 3)



Pairwise Stable Networks

• Let  𝑘 = 3 and ℳ 𝑔 = {1,2,3}. Then the network 
shown here satisfies Proposition 3.



Pairwise Stable Networks

• Let  𝑘 = 3 and ℳ 𝑔 = {1,2,3}. Then the network 
shown here satisfies Proposition 3.

• Note that since players are ex ante identical and only 
the degree matters, the identity of those in ℳ 𝑔
cannot be fixed. 

• If links costs are zero, then the complete network is 
pairwise stable.



Efficient Networks

Proposition 4: Suppose n or  𝑘 are even. Then  𝑘-
regular networks are the unique efficient networks. 

Suppose n and  𝑘 are odd. If 𝛷  𝑘 + 1 < 𝛷  𝑘 − 1 ,

then 𝑘−-regular are the unique efficient networks. If 

𝛷  𝑘 + 1 > 𝛷  𝑘 − 1 , then 𝑘+-regular are the unique 

efficient networks. 



Efficient Networks

Proposition 4: Suppose n or  𝑘 are even. Then  𝑘-
regular networks are the unique efficient networks. 
Suppose n and  𝑘 are odd. If 𝛷  𝑘 + 1 < 𝛷  𝑘 − 1 ,
then  𝑘−-regular are the unique efficient networks. If 
𝛷  𝑘 + 1 > 𝛷  𝑘 − 1 , then  𝑘+-regular are the unique 
efficient networks. 

• Examination of Propositions 3 and 4 shows that 
there exist pairwise stable networks that are not 
efficient.



Efficient Networks: Intuition

Suppose n or  𝑘 are even. Then  𝑘-regular networks 
exists by Lemma 1. They also maximize each agents 
payoffs and are efficient.

Suppose n and  𝑘 are odd. Then by Lemma 1,  𝑘+-regular 

and  𝑘−-regular networks exist. Say all agents except i

can form  𝑘 links and are maximizing their payoffs. Since 

i cannot for  𝑘 links and 𝛷 is concave, when 𝛷  𝑘 + 1 <

𝛷  𝑘 − 1 , she forms k-1 links. When 𝛷  𝑘 + 1 >

𝛷  𝑘 − 1 , then she forms k+1 links. 



Income Heterogeneity

• Each link costs F > 0.

• Rich agents: 𝑁Θ and poorer agents: 𝑁Θ
′

• In State 0 everyone gets 0, but in State 1, Θ > Θ′.
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Income Heterogeneity

• Each link costs F > 0.

• Rich agents: 𝑁Θ and poorer agents: 𝑁Θ
′

• In State 0 everyone gets 0, but in State 1, Θ > Θ′.

• By Proposition 1,   𝑘Θ and  𝑘Θ′ exist.

• By Proposition 2,   𝑘Θ   𝑘Θ′.

• Let ℳ′ 𝑔 be the set of agents who have not formed  

either  𝑘Θ or  𝑘Θ′ links.

• Let |𝑁Θ| and |𝑁Θ
′
| be even.



Income Heterogeneity: Pairwise stable 
networks

Proposition 5: Network g is pairwise stable if and only if 

for every agent 𝑖 𝜖 ℳ′ 𝑔 , 𝑛𝑖 𝑔 <  𝑘𝑥 , 𝑥 𝜖 {𝛩, 𝛩
′} and 

𝑔|ℳ′ 𝑔 is complete.

The idea is very similar to that of Proposition 3 and the proof is 
similar.



Income Heterogeneity: Pairwise stable 
networks

Proposition 5: Network g is pairwise stable if and only if 

for every agent 𝑖 𝜖 ℳ′ 𝑔 , 𝑛𝑖 𝑔 <  𝑘𝑥 , 𝑥 𝜖 {𝛩, 𝛩
′} and 

𝑔|ℳ′ 𝑔 is complete.

The idea is very similar to that of Proposition 3 and the proof is 
similar.

Corollary 2: There exists F such that only agents in 𝑁𝛩

form links.



Income Heterogeneity: Pairwise stable 
networks

 𝑘Θ   𝑘Θ′ does not imply that for 𝑖 ∈ 𝑁𝛩 and 𝑖′ ∈ 𝑁Θ
′

we will have 𝑛𝑖(𝑔) ≥ 𝑛𝑖′(𝑔).

Let 𝑁Θ = {1,2} and 𝑁Θ
′
= {3,4}. Let  𝑘Θ = 2 and  𝑘Θ′ = 1.



Generous and miserly agents

• N consists of two types of agents:

• Generous: When agent i draws State 1 she gives 𝐺

(0,1) to each of her neighbors who draws State 0.

• Miserly: When agent i draws State 1 she gives 𝑀

(0,1) to each of her neighbors who draws State 0.

• 𝐺 > 𝑀

• Each link has a fixed cost F > 0.



Results

• Marginal benefit of a GG-pairing > Marginal benefit 
of a GM-pairing.

• Marginal benefit of a MG-pairing > Marginal benefit 
of a MM-pairing.



Results

• Marginal benefit of a GG-pairing > Marginal benefit 
of a GM-pairing.

• Marginal benefit of a MG-pairing > Marginal benefit 
of a MM-pairing.

• There exists an F for which in a stable network all G-
agents and M-agents form 2 separate complete 
networks with no links between the 2 groups.

• For sufficiently small F, G-agents will also link to M-
agents in a stable network.



Cost Heterogeneity

• One of the biggest limitations of informal insurance 
is that it is “informal.”

• They require costly time and effort.

• Costs of links increase as an agent forms more links.



Cost Heterogeneity

• One of the biggest limitations of informal insurance 
is that it is “informal.”

• They require costly time and effort.

• Costs of links increase as an agent forms more links.

• What if they also depend on the number of links of 
the partner?

𝐶𝑖 𝑔 = 𝑓1𝑛𝑖 𝑔 +  

𝑙∈𝑁𝑖(𝑔)

𝑓2(𝑛𝑙(𝑔))

where 𝑓2(.) is strictly increasing and convex.



Cost Heterogeneity

• 𝐶𝑖 𝑔 + 𝑖𝑗 − 𝐶𝑖 𝑔 = 𝑓1𝑛𝑖 𝑔 + 1 + 𝑓2(𝑛𝑗(𝑔 + 1)

 This difference is strictly positive given the properties of 𝑓1
and 𝑓2.

• The benefits function is unchanged.

𝑈𝑖(𝑔, 𝑔𝑖𝑗) = [𝐵𝑖(g+𝑔𝑖𝑗)−𝐶𝑖(g+𝑔𝑖𝑗)] −[𝐵𝑖(g) −𝐶𝑖(g)]

= (𝑛𝑖(g)+1,𝑛𝑗(g)+1)



Cost Heterogeneity

(𝑛𝑖(g)+1,𝑛𝑗(g)+1) = Δ𝜙 𝑛𝑖 𝑔 + 1 −𝑓1𝑛𝑖 𝑔 + 1

−𝑓2(𝑛𝑗(𝑔 + 1)



Cost Heterogeneity

(𝑛𝑖(g)+1,𝑛𝑗(g)+1) = Δ𝜙 𝑛𝑖 𝑔 + 1 −𝑓1𝑛𝑖 𝑔 + 1

−𝑓2(𝑛𝑗(𝑔 + 1)

•  is strictly decreasing in its first argument since Δ𝜙(.) 
is strictly decreasing by Proposition 1 and 𝑓1(.) is 
strictly increasing.



Cost Heterogeneity

(𝑛𝑖(g)+1,𝑛𝑗(g)+1) = Δ𝜙 𝑛𝑖 𝑔 + 1 −𝑓1𝑛𝑖 𝑔 + 1

−𝑓2(𝑛𝑗(𝑔 + 1)

•  is strictly decreasing in its first argument since Δ𝜙(.) 
is strictly decreasing by Proposition 1 and 𝑓1(.) is 
strictly increasing.

•  is strictly decreasing in its second argument since 
𝑓2(.) is strictly increasing.



Cost Heterogeneity

(𝑛𝑖(g)+1,𝑛𝑗(g)+1) = Δ𝜙 𝑛𝑖 𝑔 + 1 −𝑓1𝑛𝑖 𝑔 + 1

−𝑓2(𝑛𝑗(𝑔 + 1)

•  is strictly decreasing in its first argument since Δ𝜙(.) 
is strictly decreasing by Proposition 1 and 𝑓1(.) is 
strictly increasing.

•  is strictly decreasing in its second argument since 
𝑓2(.) is strictly increasing.

 The marginal expected payoff function of agent i is decreasing 
in both arguments.



Cost Heterogeneity

• There exists k* such that

– (k*, k*)  0 and

– there is no k, k > k* such that (k,k)  0 .

 (k, k) > 0 for all k <  k*.

• 𝑆𝑙(𝑔): set of agents who have l links in g.



Cost Heterogeneity

• There exists k* such that

– (k*, k*)  0 and

– there is no k, k > k* such that (k,k)  0 .

 (k, k) > 0 for all k <  k*.

• 𝑆𝑙(𝑔): set of agents who have l links in g.

Proposition 7: A pairwise stable network always exists.



Pairwise stable networks

• If g* is a pairwise stable networks then the following 
conditions are satisfied:

Q1: If 𝑙, 𝑙′ > 𝑘∗, then there is no link between an agent who 
belongs to 𝑆𝑙 and an agent who belongs to 𝑆𝑙′ in g*. If 𝑙, 𝑙′ < 𝑘∗, 
then there is a link between an agent who belongs to 𝑆𝑙 and an 
agent who belongs to 𝑆𝑙′ in g*.

Q2: Suppose 𝑙′ ≤ 𝑙 < 𝑘∗ and 𝑘∗ < 𝑘′ ≤ 𝑘. If there is a link 
between an agent who belongs to 𝑆𝑙 and an agent who belongs 
to 𝑆𝑘 in g*, then there is a link between an agent who belongs to 
𝑆𝑙′ and an agent who belongs to 𝑆𝑘′ in g*. 

Q3: If (k*+1, k*) < 0, then there is no agent with more than 𝑘∗

links. 



Pairwise stable networks

• g is pairwise stable 
network with k* = 4, 
𝑆5 = {1,2}, 𝑆4 = 3,4,5

and 𝑆3 = 6,7 .

• g satisfies Q1.



Pairwise stable networks

• Suppose n or k* are even, then there exists a k-
regular network which is pairwise stable.

• Suppose n and k* are odd, then there exists an 
almost k-regular network which is pairwise stable.

• k* = 2.



In a pairwise stable network…

• Ex ante identical agents can end up with different 
amounts of insurance. 

• Agents with the highest levels of insurance  or 
“insurance leaders” (more than k* links) are not 
connected to each other,

• Agents with the lowest levels of insurance are
connected to each other (solidarity affect).

• Those with k* links can be connected to those with 
more or less links.



In a pairwise stable network…

• Even in regular networks, agents may not receive the 
same amount of insurance

• Moreover, it is possible to find the difference 
between the maximal and minimal amounts of 
insurance for any stable network

• Ex ante identical agents can end up with different 
amounts of insurance like in a star network



Efficient networks

• Let 𝑔𝑒 be an efficient network. Then 𝑔𝑒 is either a 
k-regular or almost k-regular network.

Intuition: The welfare function W(g) is the sum of 
payoffs of all agents. Hence it is concave. It follows that 
there exits a 𝑘𝑒 number of links, 𝑘𝑒 ∈ {0,1, … , 𝑛 − 1}
such that W(g) is maximal.



Efficient networks

• Hence when n or k is even only 𝑘∗-regular 
networks can be stable and efficient. 

• Let n be even. Then in the 𝑘∗-regular pairwise 
stable network, agents will form at least the same 
number of links as in the efficient network.

 Thus efficient and pairwise stable networks do 
not always coincide. Stable networks can be 
overconnected!



Conclusions

• We show that agents can always form stable mutual 
insurance agreements on their own 

• Both asymmetric and symmetric (regular and almost 
regular networks) insurance agreements can arise in 
stable networks.

• We find that those with less than the optimal links 
will  form a complete network. 

• Cannot pin down what type of networks will be 
formed by those with the optimal number of links.  



Conclusions

• With identical agents we cannot say more about the 
identity of the players in these groups.

• In efficient networks all agents have similar amounts 
(regular and almost regular networks) of insurance.

• Efficient and Stable networks may to coincide. In fact 
under cost heterogeneity, stable networks may be 
overconnected.



Conclusions

• With rich an poorer agents, we can have situations 
where the rich link to each other and the poor have 
no insurance.

• A richer person may have fewer links than a poorer 
person and may even have no links.

• With heterogeneity in the giving parameter  we find 
that for stable networks there exist parameters 
under which the GG-pairings and MM-pairings form 
two separate complete networks 



Conclusions

• When costs of link formation depend both the 
number of links each player has results are similar.

• But it is now possible to have insurance leaders who 
have more than 𝑘∗ and never connect to each other. 
Those with the lowest levels of insurance do connect 
to each other.

• A wide variety of insurance agreements are possible 
even ex ante among identical agents. 



Thank you


